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ACRONYMS	
API:	Application	Programming	Interface	
CPU:	Central	Processing	Unit		
CT:	Computerized	Axial	Tomography		
GCMMA:	Globally	Convergent	Method	of	Moving	Asymptotes		
GPU:	Graphics	Processing	Unit	
HPC:	High	Performance	Computing	
LLNL:	Lawrence	Livermore	National	Laboratories	
MIMD:	Multiple	Instruction	Streams,	Multiple	Data	Streams	
MMA:	Method	of	Moving	Asymptotes	
MPMD:	Multiple	Program	Multiple	Data	
OC:	Optimality	Criteria	
ROL:	Rapid	Optimization	Library	
SIMD:	Single	Instruction	Stream,	Multiple	Data	Streams	
SIMT:	Single	Instruction	Stream,	Multiple	Threads	
SISD:	Single	Instruction	Stream,	Single	Data	Stream	
SNL:	Sandia	National	Laboratories	
SPMD:	Single	Program	Multiple	Data	
TRAL:	Trust	Region	Augmented	Lagrangian	
TRBC:	Trust	Region	Bound	Constrained	
UC	–	Boulder:	University	of	Colorado	Boulder	
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1. EXECUTIVE	SUMMARY	
During	calendar	year	2017,	Sandia	
National	Laboratories	(SNL)	made	
strides	towards	developing	an	open	
portable	design	platform	rich	in	high-
performance	computing	(HPC)	
enabled	modeling,	analysis	and	
synthesis	tools.	The	main	focus	was	
to	lay	the	foundations	of	the	core	
interfaces	that	will	enable	plug-n-play	
insertion	of	synthesis	optimization	
technologies	in	the	areas	of	
modeling,	analysis	and	synthesis.	SNL	
achieved	the	following	milestones	

during	calendar	year	2017:		

1. Provided	personal,	systematic	and	sustained	technical	assistance;	
2. Supplied	existing	software	technology;	and		
3. Defined	milestone	tests.		

In	addition,	SNL	embarked	on	new	challenges:		

1. Development	of	an	interoperable	and	portable	HPC	design	platform;		
2. Integration	of	technologies	developed	on	the	DARPA	EQUiPS	program;	and		
3. Development	of	an	optimization	aware	analysis	tool	portable	across	multiple	platforms.		

Transforming	current	design	practices	is	complex,	multi-faceted	and	monumental	in	scope.	
During	calendar	year	2018,	SNL	will	continue	to	provide	personal,	systematic	and	sustained	
technical	assistance	and	available	software	tools	for	performers	to	leverage,	augment	and	
experiment	with.	The	measures	of	success	will	be	to:		

1. Provide	a	common,	interoperable	design	platform	and	catapult	research	and	development	
activities	(Figure	1);		

2. Eliminate	the	mundane	and	unnecessary	tasks	of	developing	existing	infrastructures	and	
software	tools;	and		

3. Provide	personal,	systematic	and	sustained	technical	support.		

SNL	is	certain	that	by	committing	to	these	principles	we	can	assure	the	success	of	the	TRADES	
program.	

	

FIGURE	 1:	 THE	MAIN	 CONCEPT	 IS	 TO	 PROVIDE	 A	 COMMON,	 INTER-OPERABLE	
DESIGN	 PLATFORM	 WITH	 THE	 GOAL	 OF	 CATAPULTING	 RESEARCH	 AND	
DEVELOPMENT	EFFORTS.	
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2. DEVELOPMENT	PLAN	SUMMARY	
Figure	2	shows	the	research	and	development	plan	proposed	by	SNL	to	DARPA.	The	ensuing	list	
numerates	the	deliverables	for	calendar	year	2017:		

1. Tasks	1.1	&	1.2:	Defined	and	developed	interoperable	application	programming	interfaces	
(API)	for	hands-free	validation/verification	analysis.	

2. Tasks	2.1	&	2.2:	Defined	and	developed	interoperable	API	for	HPC	synthesis	optimization.		
3. Tasks	3.1	&	3.2:	Defined	and	developed	interoperable	API	for	HPC	analysis	during	synthesis	

optimization.	

The	aforementioned	deliverables	for	calendar	year	2017	were	achieved.	Figure	2	also	shows	
that	SNL	met	these	deliverables	related	to	the	design	platform,	i.e.	Plato	Engine:	

1. Task	2.3:	Demonstrate	interoperability	and	workflow	with	multiple	gradient-based	
synthesis	optimization	algorithms.	

2. Task	3.3:	Demonstrated	interoperability	and	workflow	with	multiple	analysis	tools.	

In	addition,	SNL	and	its	partners	at	University	of	Colorado	Boulder	(UC-Boulder),	developed	a	
new	HPC	model	generation	toolkit	capable	of	automatically	creating	complex	geometric	models	

FIGURE	2:	RESEARCH	AND	DEVELOPMENT	PLAN.	
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from	level	set,	or	voxel,	representations.	This	toolkit	was	demonstrated	on	a	free-form	
synthesis	optimization	problem,	i.e.	topology	optimization	problem,	and	on	the	femur	
challenge	problem.	The	latter	example	used	the	computerized	axial	tomography	(CT)	scan	data	
provided	by	DARPA	to	reconstruct	a	geometric	model	of	the	femur.	SNL	and	UC-Boulder	are	
currently	testing	the	interfaces	to	ensure	that	the	toolkit	performs	optimally	when	released.		

3. ACCOMPLISHMENTS	

3.1 INTEROPERABLE	DESIGN	PLATFORM	
The	main	development	goal	for	calendar	year	2017	was	to	lay	the	foundations	of	the	HPC	
design	platform.	This	entailed	careful	crafting	of	lightweight	interfaces	that	enable	
intercommunication	of	modeling,	analysis	and	synthesis	data	using	a	multiple	program,	
multiple	data	(MPMD)	parallel	programming	model.	This	MPMD	model	allows	multiple	
programs/executables	to	run	independently	while	communicating	with	one	another.	The	
synthesis	optimization	algorithm	orchestrates	the	execution	and	communication	between	the	
various	analysis	codes	and	aggregates	their	contributions	to	generate	a	design	that	meets	
multiple	design	criteria.	This	HPC	architecture,	among	other	features,	facilitates	the	following:		

	

FIGURE	3:	EXAMPLE	SYNTHESIS	OPTIMIZATION	PROBLEM	SOLVED	WITH	THE	 INTEROPERABLE	DESIGN	PLATFORM	USING	AN	MPMD	
PROGRAMMING	MODEL.	
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1. Combination	of	multiple	analysis	tools	for	multi-physics	synthesis	optimization;		
2. Simultaneous	analysis	of	multiple	loads	during	synthesis	optimization;	and		
3. Efficient	solution	of	synthesis	optimization	problems	with	uncertain	model	parameters.		

This	design	platform	enables	the	intercommunication	of	modeling,	analysis	and	synthesis	data	
using	a	single	program,	multiple	data	(SPMD)	parallel	programming	model.	Therefore,	if	an	
application	requires	modeling,	analysis	and	synthesis	tools	to	share	the	same	number	of	
processors	and	avoid	communication	overhead,	the	Plato	Engine	platform	will	facilitate	users	to	
run	their	synthesis	optimization	problem	with	an	SPMD	model.	Therefore,	once	users	
implement	the	five	functions	that	define	the	Plato	Engine	interface,	MPMD	and	SPMD	parallel	
programming	models	will	be	supported.	SNL	plans	to	test	the	SPMD	parallel	programing	model	
during	calendar	year	2018	to	ensure	that	the	Plato	Engine	interface	properly	supports	both	
parallel	programming	models.		

	

FIGURE	4:	ONE	QUARTER	OF	THE	FEMUR	MODEL	CONSTRUCTED	FROM	THE	CT	SCAN	DATA	PROVIDED	BY	DARPA	TRADES.		
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SNL	also	thinks	that	the	new	Plato	Engine	architecture	could	support	cloud	computing.	The	key	
is	to	develop	the	data	communication	layer	that	enables	Plato	to	transfer	and	receive	data	from	
the	modeling,	analysis	and	synthesis	tools	running	in	the	cloud.	The	existing	data	
communication	layer	will	be	used	to	support	SPMD	and	MPMD	parallel	programming	models.	
During	calendar	year	2018	SNL	could	also	explore	how	this	same	data	communication	layer	
could	be	used	to	support	cloud	computing.	The	interfaces	of	SNL	modeling,	analysis	and	
synthesis	tools	do	not	need	major	modifications;	thus,	SNL	would	leverage	these	tools	to	test	
the	cloud	computing	paradigm.		

Lastly,	unit	test	and	regression	test	suites	were	developed	to	ensure	that	the	design	platform	is	
nightly	tested	with	multiple	synthesis	optimization	algorithms	and	analysis	tools	(Sierra	
Structural	Dynamics,	Albany,	etc.).	The	outlook	for	calendar	year	2018	is	the	integration	of	
more	synthesis	and	analysis	tools	into	the	Plato	ecosystem.	Indeed,	the	Rapid	Optimization	
Library	(ROL),	the	electrostatic	code	Aleph,	the	graphic	processing	unit	(GPU)	accelerated	multi-
physics	solver	Alexa	and	Sierra	Thermo-Mechanics	&	Fluids	Module	should	be	integrated	into	
the	Plato	ecosystem.	Furthermore,	SNL	and	Lawrence	Livermore	National	Laboratories	(LLNL)	
are	exploring	a	partnership	that	will	enable	LLNL	to	integrate	their	electromagnetics	solver	into	
the	Plato	ecosystem	during	calendar	year	2018.		

3.2 MODELING	
The	modeling	accomplishments	for	calendar	year	2017	are	summarized	below:		

	

FIGURE	5:	OPTIMAL	GEOMETRY	COMPUTED	FROM	A	FREE-FORM	(I.E.	TOPOLOGY	OPTIMIZATION)	SYNTHESIS	OPTIMIZATION	PROCESS.	
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1. Model	Generation	Toolkit1:	Defined	and	developed	APIs	to	enable	hands-free	verification	
simulations.	Complex	geometric	models	are	created	from	a	level	set,	or	voxel,	
representation	of	the	geometry.	The	model	generation	toolkit	supports	multiple	material	
representations	and	is	designed	for	HPC,	which	enables	the	hands-free	creation	of	large-
scale	geometric	models	that	are	impossible	to	create	without	HPC.	Figure	4	shows	a	femur	
model	that	was	built	from	CT	scan	data.	The	toolkit	took	approximately	four	minutes	on	
twelve	processors	to	create	the	full	femur	model.	The	toolkit	is	also	impacting	work	at	SNL.	
Indeed,	the	toolkit	will	be	used	to	complete	a	major	design	milestone	during	calendar	year	
2018.	Figure	5	shows	how	SNL	applied	this	toolkit	to	solve	a	free-form	synthesis	
optimization	problem	and	demonstrate	the	technology.	By	using	a	level	set	representation	
of	the	geometry,	the	toolkit	constructed	the	optimal	geometric	model	used	for	analysis.			

2. Primitive	Identification	Toolkit:	Developed	a	stand-alone,	C++	library	that	automatically	
identifies	common	geometric	features	from	faceted	data,	see	Figure	6.	This	toolkit	will	be	
used	by	SNL	and	UC-Boulder	to	automatically	identify	common	primitives	that	emerge	

																																																								
1This	work	is	a	partnership	between	University	of	Colorado	Boulder	and	Sandia	National	Laboratories.	

	

FIGURE	6:	PROCESS	TO	AUTOMATICALLY	IDENTIFY	COMMON	GEOMETRIC	PRIMITIVES.	FIRST,	CONVERT	FACETED	DATA	TO	BOUNDARY	
REPRESENTATION	 (B-REPS).	SECOND,	REMOVE	ANY	DISJOINT	AND	OVERLAPPING	TRIANGLES.	THIRD,	REMOVE	DUPLICATE	TRIANGLES	
ON	THE	BOUNDARY.	FINALLY,	IDENTIFY	THE	GEOMETRIC	PRIMITIVES.		
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during	free-form	synthesis	optimization.	This	feature	enables	the	optimizer	to	work	with	
less	number	of	design	variables	and	local	sensitivity	calculations	as	the	synthesis	
optimization	problem	progresses,	making	the	optimizer	faster	and	more	intelligent.	The	
primitive	identification	toolkit	also	permits	the	parameterization	of	level	set	
representations,	which	enables	parametric	optimization	(i.e.	shape	optimization).	SNL	plans	
to	support	more	primitives	during	calendar	year	2018.		

3.3 SYNTHESIS	
The	synthesis	optimization	libraries	developed	during	calendar	year	2017	were	designed	to	
support	multiple	computer	architectures	as	well	as	parallel	programming	models.	Indeed,	the	
ensuing	list	highlights	the	computer	architectures	supported:		

1. Single	Instruction	Stream,	Single	Data	Stream	(SISD):	Supports	no	parallelism.	
2. Single	Instruction	Stream,	Multiple	Data	Streams	(SIMD):	Supports	multiple	data	streams	

in	a	single	instruction	stream,	e.g.	one	GPU.	
3. Multiple	Instruction	Streams,	Multiple	Data	Streams	(MIMD):	Supports	multiple	

autonomous	processors	simultaneously	performing	multiple	instructions	on	distinct	data	
streams,	e.g.	multicore	processors	and	distributed	architectures	using	either	one	shared	or	
distributed	memory	space.	

4. Single	Instruction	Stream,	Multiple	Threads	(SIMT):	Supports	combining	a	single	instruction	
stream,	multiple	data	stream	model	with	multithreading.	

5. Cloud	Computing:	Enables	access	to	shared	pools	of	computing	devices.		

In	addition	to	the	aforementioned	computer	architectures,	the	optimization	libraries	support	
MPMD	and	SPMD	parallel	programming	models.	These	features	display	the	level	of	
interoperability	that	these	optimization	libraries	support.	The	ensuing	list	highlights	the	
features	offered	by	these	libraries:		

1. Kernel	Filter	Library:	Stand-alone	C++	kernel	filter	library	used	to	smooth	the	geometry	by	
penalizing	rough	surfaces,	control	the	allowable	feature	size	and	stabilize	the	synthesis	
optimization	formulation.	The	library	also	features	multiple	parallel	search	algorithms	that	
can	be	used	outside	the	kernel	filter.	Performers	can	start	leveraging	and	using	this	tool	by	
implementing	the	five	functions	that	define	the	Plato-Engine	interface,	see	Section	3.1.	

2. Gradient-Based	Optimization	Algorithms:	Stand-alone	C++	optimization	library	suited	for	
HPC.	Several	optimization	algorithms	were	tightly	integrated	with	Sierra	Structural	
Dynamics,	which	prevented	other	analysis	codes	from	leveraging	the	synthesis	optimization	
algorithms.	These	algorithms	were	removed	from	Sierra	Structural	Dynamics	Module	and	
interoperable	interfaces	were	defined	and	developed	to	enable	other	analysis	codes	to	use	
the	algorithms.	The	ensuing	list	highlights	some	of	the	algorithms	available	in	the	library:	
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1. Optimality	Criteria	(OC):	First-order	(i.e.	supports	gradient	but	no	Hessian	information)	
optimization	algorithm	tailored	for	compliance	minimization	problems	with	bound	
constraints	and	single	or	multiple	linear	inequality	constraints.	The	algorithm	supports	
multiple	materials,	i.e.	design	variable	fields,	suitable	for	multi-material	synthesis	
optimization	problems	with	bound	constraints	and	single/multiple	linear	inequality	
constraints.	The	algorithm	does	not	support	a	globalization	strategy,	making	it	prone	to	
local	minima.		

2. Method	of	Moving	Asymptotes	(MMA):	First-order	nonlinear	programming	optimization	
algorithm	that	supports	bound,	linear	and	nonlinear	inequality	constraints	and	multiple	
design	variable	fields.	Compared	to	the	OC	algorithm,	it	can	be	applied	to	more	general	
nonlinear	programming	optimization	problems.	Therefore,	the	MMA	algorithm	is	not	
tailored	for	compliance	minimization	problems.	However,	similar	to	the	OC	algorithm,	
the	algorithm	is	prone	to	local	minima	since	it	does	not	support	a	globalization	strategy.		

3. Globally	Convergent	Method	of	Moving	Asymptotes	(GCMMA):	First-order	nonlinear	
programming	optimization	algorithm	that	supports	bound,	linear	and	nonlinear	
inequality	constraints	and	multiple	design	variable	fields.	Similar	to	the	MMA	algorithm,	
it	is	suited	for	more	general	nonlinear	programming	optimization	problems.	However,	
contrary	to	the	MMA	algorithm,	the	GCMMA	algorithm	is	less	prone	to	local	minima	
since	it	supports	a	globalization	strategy.	

4. Trust	Region	Bound	Constrained	(TRBC):	Matrix-free	second-order	nonlinear	
programming	optimization	algorithm	that	supports	gradient	and	Hessian	information.	If	
the	user	provides	Hessian	information,	the	algorithm	is	capable	of	achieving	quadratic	
convergence	rates.	Contrary,	first-order	optimization	algorithms	can	only	achieve	linear	
convergence	rates.	If	the	user	provides	no	Hessian	information,	the	algorithm	supports	
multiple	features	to	approximate	the	Hessian	information	with	minimal	computational	
cost.	The	trust	region	scheme	is	a	theoretically	sound	globalization	strategy	that	enables	
the	algorithm	to	be	less	prone	to	local	minima.	However,	the	only	downfall	of	the	TRBC	
algorithm	is	that	it	only	supports	bound	constraints.	Hence,	it	is	not	suited	for	synthesis	
optimization	problems	with	inequality	constraints.		

5. Trust	Region	Augmented	Lagrangian	(TRAL):	Matrix-free	second-order	nonlinear	
programming	optimization	algorithm	that	has	all	the	features	supported	by	the	TRBC	
algorithm.	However,	contrary	to	the	TRBC	algorithm,	the	TRAL	algorithm	supports	linear	
and	nonlinear	inequality	constraints.		

3.4 ANALYSIS	
During	calendar	year	2017	SNL	embarked	on	a	new	research	challenge:	the	development	of	an	
optimization	aware,	multi-physics	solver	that	is	portable	across	multiple	computer	
architectures.	The	flexibility	achieved	with	this	templetized	multi-physics	solver	is	such	that	it	
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facilitates	the	use	of	different	floating-point	types	during	analysis.	For	instance,	SNL	is	assisting	
Etaphase	compare	Unum	and	IEEE	floating-point	types.	This	exercise	would	have	been	difficult,	
if	not	impossible	to	be	performed,	without	the	templetized	analysis	tool.	Furthermore,	since	
the	solver	was	designed	to	be	portable	across	multiple	computer	architectures,	the	solver	
supports	SISD,	SIMD,	MIMD	and	SIMT	data	parallelism	and	MPMD	and	SPMD	parallel	
programming	models.			

SNL	also	added	other	features	that	enhance	the	functionalities	available	in	the	multi-physics	
solver.	The	ensuing	list	highlights	some	of	these	features:		

1. Automatic	Differentiation:	Enables	automatic	computation	of	the	sensitivities	needed	to	
solve	synthesis	optimization	problems.	For	instance,	Figure	7	shows	the	central	processing	
unit	(CPU)	and	GPU	time	that	the	automatic	differentiation	tool	took	to	compute	the	
sensitivities	of	a	criterion	defined	as	the	measurement	of	the	misfit	between	a	set	of	
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FIGURE	7:	THIS	PLOT	SHOWS	THE	SPEEDUPS	ACHIEVED	WITH	THE	GPU,	VERSUS	THE	CPU,	USING	AUTOMATIC	DIFFERENTATION	
TO	COMPUTE	THE	SENSITIVITY	OF	A	CRITERIA	WITH	RESPECT	TO	A	SET	OF	DESIGN	VARIABLES.	IN	THIS	EXAMPLE,	EACH	NODE	
IN	THE	COMPUTATIONAL	MESH	DEPENDED	ON	30	DESIGN	VARIABLES.	HENCE,	THE	TOTAL	NUMBER	OF	DESIGN	VARIABLES	
EQUALS	THE	ARRAY	LENGTH	TIMES	30.		
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experimental	measurements	and	simulated	state	solution	with	respect	to	a	set	of	design	
variables.	Figure	7	not	only	highlights	the	portability	and	interoperability	of	the	automatic	
differentiation	tool,	but	it	also	highlights	the	efficiency	of	the	GPU.	This	tool	will	allow	
developers	to	avoid	the	tedious	task	of	deriving	and	coding	sensitivities	and	focus	on	
improving	the	algorithms	needed	to	solve	synthesis	optimization	problems.	

2. Adaptive	Mesh	Refinement:	Enables	adaptive	mesh	refinement	of	tetrahedron	and	triangle	
meshes,	with	a	focus	on	scalable	HPC	performance.	It	is	intended	to	provide	adaptive	
functionality	to	existing	simulation	codes.	This	tool	allows	users	to	reduce	discretization	
error	and	number	of	degrees	of	freedom	during	analysis	and	enable	modeling	of	moving	
objects	and	evolving	geometries.		

3. Speedups:	Figure	7	shows	the	speedups	that	the	GPU	version	of	the	automatic	
differentiation	tool	enables	over	its	CPU	counterpart.	Indeed,	the	GPU-accelerated	solver	
was	able	to	solve	a	2e6	degree	of	freedom	heat	conduction	problem	in	approximately	0.8	
seconds	using	a	single	NVIDIA	Tesla	P100	GPU.	Figure	8	shows	an	additional	example	
highlighting	the	performance	of	the	GPU-accelerated	linear	static	module	in	the	multi-
physics	analysis	tool.	It	is	clear	that	the	GPU	is	performing	as	desired.	SNL	is	excited	about	

	

FIGURE	8:	RUN	TIMES	FOR	LINEAR	STATICS	SOLUTION	ON	A	LAPTOP	WITH	A	SINGLE	NVIDIA	QUADRO	M4000M	GPU.		THE	SOLVER	
CONVERGENCE	WAS	SET	TO	1E-12	OF	INITIAL	RESIDUAL.	THE	RED	LINE	DENOTES	THE	THORETICAL	SCALING	AND	THE	BLACK	LINE	
DENOTES	THE	ACTUAL	SCALING.			
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the	multiple	possibilities	that	this	solver	offers	and	will	continue	maturing	the	analysis	tool	
during	calendar	year	2018.		

3.5 TECHNICAL	ASSISTANCE	
SNL	fulfilled	its	commitment	to	provide	performers	with	technical	assistance	during	calendar	
year	2017.	SNL	contacted	all	TA1	performers,	gathered	technical	and	software	needs	and	
explored	multiple	partnerships.	The	ensuing	list	highlights	some	of	these	interactions:		

1. Technical	Outreach:	SNL	was	able	to	assist	multiple	partners	in	academia:	
1. Prof.	Kurt	Maute:	SNL	and	Prof.	Maute	are	developing	the	model	generation	toolkit	that	

can	automatically	generate	a	geometry	model	from	a	level	set	representation.	SNL	plans	
to	integrate	this	tool	into	the	Plato	ecosystem	and	make	it	available	to	performers	
during	calendar	year	2018.	

2. Prof.	Carolyn	Seepersad:	A	Plato	license	was	approved	and	a	copy	of	the	Plato	software	
was	sent	to	Prof.	Seepersad	during	calendar	year	2017.	Prof.	Seepersad	is	expected	to	
use	Plato	for	her	machine	learning	research	work.	

3. Prof.	Jorg	Peters:	Prof.	Peters	expects	to	visit	SNL	during	calendar	year	2018	and	assist	
SNL	with	the	integration	of	his	modeling	software	into	the	Plato	ecosystem.	This	
interaction	will	allow	Prof.	Peters	to	test	his	modeling	algorithms	with	SNL’s	analysis	and	
synthesis	tools.	

4. Prof.	Matt	Campbell:	Multiple	teleconferences	were	held	to	discuss	the	synthesis	
optimization	algorithms	available	in	Plato.	SNL	encourage	Prof.	Campbell	to	leverage	
ROL,	an	open	source	optimization	library	developed	by	SNL.		

5. Prof.	Vadim	Shapiro:	Multiple	teleconferences	were	held	to	discuss	interoperability.	SNL	
and	Prof.	Shapiro	shared	and	discussed	multiple	approaches	that	enhanced	the	
interoperability	of	the	Plato	Engine	platform.		

2. Etaphase:	SNL	provided	sustained	technical	assistance	to	Etaphase	during	calendar	year	
2017.	Indeed,	SNL	and	Etaphase	are	partnering	to	test	the	Unum	floating-point	type	with	
the	templetized	GPU-accelerated	solver.	

3. Siemens:	Siemens	plans	to	use	Albany	as	their	main	analysis	platform	during	the	TRADES	
program.	SNL,	after	multiple	teleconferences,	aided	Siemens	understanding	of	Albany’s	
infrastructure	and	workflow.	These	discussions	allowed	Siemens	to	independently	begin	
developing	a	multiscale	material	model	in	Albany.	

4. Lawrence	Livermore	National	Laboratories:	SNL	and	LLNL	are	pursuing	a	partnership	that	
will	enable	LLNL	to	leverage	the	modeling,	analysis	and	synthesis	tools	in	Plato.	The	goal	is	
to	integrate	LLNL	electromagnetics	solver	with	Plato	during	calendar	year	2018.	SNL	will	
assist	LLNL	implement	the	five	functions	that	define	the	Plato	Engine	interface.	
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5. United	Technologies:	SNL	developed	a	stand-alone	C++	library	that	takes	a	level	set	
representation	of	the	geometry	and	automatically	detects	tubes	and	outputs	the	
parameters	that	define	these	tubes.	This	tool	enable	United	Technologies	to	accelerate	
their	machine	learning	research	work.	

6. Challenge	Problems:	SNL	provided	one	of	the	two	synthesis	challenge	problems	presented	
by	DARPA	to	the	performers.	The	challenge	problem	aims	to	design	a	lightweight	bracket	
that	preserves	the	structural	integrity	of	the	cargo	shown	on	Figure	9.	The	bracket	will	be	
subjected	to	multiple	loading	configurations	and	must	preserve	its	structural	integrity	for	all	
loading	combinations.	In	addition,	the	first	natural	frequency	must	be	maximized	to	avoid	
having	the	cargo	vibrate	once	connected	to	a	next	level	assembly.	SNL	also	assisted	DARPA	
on	the	second	synthesis	challenge	problem	by	providing	a	concise	report	that	depicted	all	
the	loading	configurations	applied	to	the	racecar	bracket.		

4. FINANCIAL	STATUS	
See	financial	report	submitted	with	the	annual	report.	

Cargo 

FIGURE	9:	BRACKET	GEOMETRY	
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5. BARRIERS	
No	major	technical	barriers	to	report.	
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